Copied to
clipboard

G = C24.7D10order 320 = 26·5

7th non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.7D10, C23.5Dic10, (C2×C20).50D4, C2.5(C20⋊D4), (C2×Dic5).63D4, (C22×C4).29D10, C22.239(D4×D5), (C22×C10).13Q8, C10.11(C41D4), C52(C23.4Q8), C10.57(C22⋊Q8), C2.8(C20.48D4), C22.96(C4○D20), (C23×C10).32C22, (C22×C20).58C22, C22.46(C2×Dic10), C23.368(C22×D5), C10.10C4229C2, C22.94(D42D5), (C22×C10).324C23, C2.20(D10.12D4), C2.6(C23.18D10), C10.29(C22.D4), (C22×Dic5).40C22, C2.22(Dic5.14D4), (C2×C4⋊Dic5)⋊9C2, (C2×C10).34(C2×Q8), (C2×C10.D4)⋊9C2, (C2×C10).318(C2×D4), (C2×C4).29(C5⋊D4), (C2×C22⋊C4).12D5, (C2×C10).78(C4○D4), (C10×C22⋊C4).14C2, C22.124(C2×C5⋊D4), (C2×C23.D5).11C2, SmallGroup(320,576)

Series: Derived Chief Lower central Upper central

C1C22×C10 — C24.7D10
C1C5C10C2×C10C22×C10C22×Dic5C2×C4⋊Dic5 — C24.7D10
C5C22×C10 — C24.7D10
C1C23C2×C22⋊C4

Generators and relations for C24.7D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=dc=cd, f2=c, ab=ba, ac=ca, eae-1=ad=da, faf-1=abd, bc=cb, bd=db, be=eb, bf=fb, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde9 >

Subgroups: 614 in 186 conjugacy classes, 63 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C23.4Q8, C10.D4, C4⋊Dic5, C23.D5, C5×C22⋊C4, C22×Dic5, C22×C20, C23×C10, C10.10C42, C2×C10.D4, C2×C4⋊Dic5, C2×C23.D5, C10×C22⋊C4, C24.7D10
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, C22.D4, C41D4, Dic10, C5⋊D4, C22×D5, C23.4Q8, C2×Dic10, C4○D20, D4×D5, D42D5, C2×C5⋊D4, Dic5.14D4, D10.12D4, C20.48D4, C23.18D10, C20⋊D4, C24.7D10

Smallest permutation representation of C24.7D10
On 160 points
Generators in S160
(2 49)(4 51)(6 53)(8 55)(10 57)(12 59)(14 41)(16 43)(18 45)(20 47)(21 130)(23 132)(25 134)(27 136)(29 138)(31 140)(33 122)(35 124)(37 126)(39 128)(61 146)(62 101)(63 148)(64 103)(65 150)(66 105)(67 152)(68 107)(69 154)(70 109)(71 156)(72 111)(73 158)(74 113)(75 160)(76 115)(77 142)(78 117)(79 144)(80 119)(81 110)(82 157)(83 112)(84 159)(85 114)(86 141)(87 116)(88 143)(89 118)(90 145)(91 120)(92 147)(93 102)(94 149)(95 104)(96 151)(97 106)(98 153)(99 108)(100 155)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(41 134)(42 135)(43 136)(44 137)(45 138)(46 139)(47 140)(48 121)(49 122)(50 123)(51 124)(52 125)(53 126)(54 127)(55 128)(56 129)(57 130)(58 131)(59 132)(60 133)(61 120)(62 101)(63 102)(64 103)(65 104)(66 105)(67 106)(68 107)(69 108)(70 109)(71 110)(72 111)(73 112)(74 113)(75 114)(76 115)(77 116)(78 117)(79 118)(80 119)(81 156)(82 157)(83 158)(84 159)(85 160)(86 141)(87 142)(88 143)(89 144)(90 145)(91 146)(92 147)(93 148)(94 149)(95 150)(96 151)(97 152)(98 153)(99 154)(100 155)
(1 58)(2 59)(3 60)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 51)(15 52)(16 53)(17 54)(18 55)(19 56)(20 57)(21 140)(22 121)(23 122)(24 123)(25 124)(26 125)(27 126)(28 127)(29 128)(30 129)(31 130)(32 131)(33 132)(34 133)(35 134)(36 135)(37 136)(38 137)(39 138)(40 139)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(71 91)(72 92)(73 93)(74 94)(75 95)(76 96)(77 97)(78 98)(79 99)(80 100)(101 157)(102 158)(103 159)(104 160)(105 141)(106 142)(107 143)(108 144)(109 145)(110 146)(111 147)(112 148)(113 149)(114 150)(115 151)(116 152)(117 153)(118 154)(119 155)(120 156)
(1 48)(2 49)(3 50)(4 51)(5 52)(6 53)(7 54)(8 55)(9 56)(10 57)(11 58)(12 59)(13 60)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 130)(22 131)(23 132)(24 133)(25 134)(26 135)(27 136)(28 137)(29 138)(30 139)(31 140)(32 121)(33 122)(34 123)(35 124)(36 125)(37 126)(38 127)(39 128)(40 129)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 81)(72 82)(73 83)(74 84)(75 85)(76 86)(77 87)(78 88)(79 89)(80 90)(101 147)(102 148)(103 149)(104 150)(105 151)(106 152)(107 153)(108 154)(109 155)(110 156)(111 157)(112 158)(113 159)(114 160)(115 141)(116 142)(117 143)(118 144)(119 145)(120 146)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 160 58 104)(2 159 59 103)(3 158 60 102)(4 157 41 101)(5 156 42 120)(6 155 43 119)(7 154 44 118)(8 153 45 117)(9 152 46 116)(10 151 47 115)(11 150 48 114)(12 149 49 113)(13 148 50 112)(14 147 51 111)(15 146 52 110)(16 145 53 109)(17 144 54 108)(18 143 55 107)(19 142 56 106)(20 141 57 105)(21 96 140 76)(22 95 121 75)(23 94 122 74)(24 93 123 73)(25 92 124 72)(26 91 125 71)(27 90 126 70)(28 89 127 69)(29 88 128 68)(30 87 129 67)(31 86 130 66)(32 85 131 65)(33 84 132 64)(34 83 133 63)(35 82 134 62)(36 81 135 61)(37 100 136 80)(38 99 137 79)(39 98 138 78)(40 97 139 77)

G:=sub<Sym(160)| (2,49)(4,51)(6,53)(8,55)(10,57)(12,59)(14,41)(16,43)(18,45)(20,47)(21,130)(23,132)(25,134)(27,136)(29,138)(31,140)(33,122)(35,124)(37,126)(39,128)(61,146)(62,101)(63,148)(64,103)(65,150)(66,105)(67,152)(68,107)(69,154)(70,109)(71,156)(72,111)(73,158)(74,113)(75,160)(76,115)(77,142)(78,117)(79,144)(80,119)(81,110)(82,157)(83,112)(84,159)(85,114)(86,141)(87,116)(88,143)(89,118)(90,145)(91,120)(92,147)(93,102)(94,149)(95,104)(96,151)(97,106)(98,153)(99,108)(100,155), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(41,134)(42,135)(43,136)(44,137)(45,138)(46,139)(47,140)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,133)(61,120)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(73,112)(74,113)(75,114)(76,115)(77,116)(78,117)(79,118)(80,119)(81,156)(82,157)(83,158)(84,159)(85,160)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155), (1,58)(2,59)(3,60)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,140)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,127)(29,128)(30,129)(31,130)(32,131)(33,132)(34,133)(35,134)(36,135)(37,136)(38,137)(39,138)(40,139)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(71,91)(72,92)(73,93)(74,94)(75,95)(76,96)(77,97)(78,98)(79,99)(80,100)(101,157)(102,158)(103,159)(104,160)(105,141)(106,142)(107,143)(108,144)(109,145)(110,146)(111,147)(112,148)(113,149)(114,150)(115,151)(116,152)(117,153)(118,154)(119,155)(120,156), (1,48)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,56)(10,57)(11,58)(12,59)(13,60)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,130)(22,131)(23,132)(24,133)(25,134)(26,135)(27,136)(28,137)(29,138)(30,139)(31,140)(32,121)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,129)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(113,159)(114,160)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,160,58,104)(2,159,59,103)(3,158,60,102)(4,157,41,101)(5,156,42,120)(6,155,43,119)(7,154,44,118)(8,153,45,117)(9,152,46,116)(10,151,47,115)(11,150,48,114)(12,149,49,113)(13,148,50,112)(14,147,51,111)(15,146,52,110)(16,145,53,109)(17,144,54,108)(18,143,55,107)(19,142,56,106)(20,141,57,105)(21,96,140,76)(22,95,121,75)(23,94,122,74)(24,93,123,73)(25,92,124,72)(26,91,125,71)(27,90,126,70)(28,89,127,69)(29,88,128,68)(30,87,129,67)(31,86,130,66)(32,85,131,65)(33,84,132,64)(34,83,133,63)(35,82,134,62)(36,81,135,61)(37,100,136,80)(38,99,137,79)(39,98,138,78)(40,97,139,77)>;

G:=Group( (2,49)(4,51)(6,53)(8,55)(10,57)(12,59)(14,41)(16,43)(18,45)(20,47)(21,130)(23,132)(25,134)(27,136)(29,138)(31,140)(33,122)(35,124)(37,126)(39,128)(61,146)(62,101)(63,148)(64,103)(65,150)(66,105)(67,152)(68,107)(69,154)(70,109)(71,156)(72,111)(73,158)(74,113)(75,160)(76,115)(77,142)(78,117)(79,144)(80,119)(81,110)(82,157)(83,112)(84,159)(85,114)(86,141)(87,116)(88,143)(89,118)(90,145)(91,120)(92,147)(93,102)(94,149)(95,104)(96,151)(97,106)(98,153)(99,108)(100,155), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(41,134)(42,135)(43,136)(44,137)(45,138)(46,139)(47,140)(48,121)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,133)(61,120)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,109)(71,110)(72,111)(73,112)(74,113)(75,114)(76,115)(77,116)(78,117)(79,118)(80,119)(81,156)(82,157)(83,158)(84,159)(85,160)(86,141)(87,142)(88,143)(89,144)(90,145)(91,146)(92,147)(93,148)(94,149)(95,150)(96,151)(97,152)(98,153)(99,154)(100,155), (1,58)(2,59)(3,60)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,140)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,127)(29,128)(30,129)(31,130)(32,131)(33,132)(34,133)(35,134)(36,135)(37,136)(38,137)(39,138)(40,139)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(71,91)(72,92)(73,93)(74,94)(75,95)(76,96)(77,97)(78,98)(79,99)(80,100)(101,157)(102,158)(103,159)(104,160)(105,141)(106,142)(107,143)(108,144)(109,145)(110,146)(111,147)(112,148)(113,149)(114,150)(115,151)(116,152)(117,153)(118,154)(119,155)(120,156), (1,48)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,56)(10,57)(11,58)(12,59)(13,60)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,130)(22,131)(23,132)(24,133)(25,134)(26,135)(27,136)(28,137)(29,138)(30,139)(31,140)(32,121)(33,122)(34,123)(35,124)(36,125)(37,126)(38,127)(39,128)(40,129)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(101,147)(102,148)(103,149)(104,150)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(113,159)(114,160)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,160,58,104)(2,159,59,103)(3,158,60,102)(4,157,41,101)(5,156,42,120)(6,155,43,119)(7,154,44,118)(8,153,45,117)(9,152,46,116)(10,151,47,115)(11,150,48,114)(12,149,49,113)(13,148,50,112)(14,147,51,111)(15,146,52,110)(16,145,53,109)(17,144,54,108)(18,143,55,107)(19,142,56,106)(20,141,57,105)(21,96,140,76)(22,95,121,75)(23,94,122,74)(24,93,123,73)(25,92,124,72)(26,91,125,71)(27,90,126,70)(28,89,127,69)(29,88,128,68)(30,87,129,67)(31,86,130,66)(32,85,131,65)(33,84,132,64)(34,83,133,63)(35,82,134,62)(36,81,135,61)(37,100,136,80)(38,99,137,79)(39,98,138,78)(40,97,139,77) );

G=PermutationGroup([[(2,49),(4,51),(6,53),(8,55),(10,57),(12,59),(14,41),(16,43),(18,45),(20,47),(21,130),(23,132),(25,134),(27,136),(29,138),(31,140),(33,122),(35,124),(37,126),(39,128),(61,146),(62,101),(63,148),(64,103),(65,150),(66,105),(67,152),(68,107),(69,154),(70,109),(71,156),(72,111),(73,158),(74,113),(75,160),(76,115),(77,142),(78,117),(79,144),(80,119),(81,110),(82,157),(83,112),(84,159),(85,114),(86,141),(87,116),(88,143),(89,118),(90,145),(91,120),(92,147),(93,102),(94,149),(95,104),(96,151),(97,106),(98,153),(99,108),(100,155)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(41,134),(42,135),(43,136),(44,137),(45,138),(46,139),(47,140),(48,121),(49,122),(50,123),(51,124),(52,125),(53,126),(54,127),(55,128),(56,129),(57,130),(58,131),(59,132),(60,133),(61,120),(62,101),(63,102),(64,103),(65,104),(66,105),(67,106),(68,107),(69,108),(70,109),(71,110),(72,111),(73,112),(74,113),(75,114),(76,115),(77,116),(78,117),(79,118),(80,119),(81,156),(82,157),(83,158),(84,159),(85,160),(86,141),(87,142),(88,143),(89,144),(90,145),(91,146),(92,147),(93,148),(94,149),(95,150),(96,151),(97,152),(98,153),(99,154),(100,155)], [(1,58),(2,59),(3,60),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,51),(15,52),(16,53),(17,54),(18,55),(19,56),(20,57),(21,140),(22,121),(23,122),(24,123),(25,124),(26,125),(27,126),(28,127),(29,128),(30,129),(31,130),(32,131),(33,132),(34,133),(35,134),(36,135),(37,136),(38,137),(39,138),(40,139),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(71,91),(72,92),(73,93),(74,94),(75,95),(76,96),(77,97),(78,98),(79,99),(80,100),(101,157),(102,158),(103,159),(104,160),(105,141),(106,142),(107,143),(108,144),(109,145),(110,146),(111,147),(112,148),(113,149),(114,150),(115,151),(116,152),(117,153),(118,154),(119,155),(120,156)], [(1,48),(2,49),(3,50),(4,51),(5,52),(6,53),(7,54),(8,55),(9,56),(10,57),(11,58),(12,59),(13,60),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,130),(22,131),(23,132),(24,133),(25,134),(26,135),(27,136),(28,137),(29,138),(30,139),(31,140),(32,121),(33,122),(34,123),(35,124),(36,125),(37,126),(38,127),(39,128),(40,129),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,81),(72,82),(73,83),(74,84),(75,85),(76,86),(77,87),(78,88),(79,89),(80,90),(101,147),(102,148),(103,149),(104,150),(105,151),(106,152),(107,153),(108,154),(109,155),(110,156),(111,157),(112,158),(113,159),(114,160),(115,141),(116,142),(117,143),(118,144),(119,145),(120,146)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,160,58,104),(2,159,59,103),(3,158,60,102),(4,157,41,101),(5,156,42,120),(6,155,43,119),(7,154,44,118),(8,153,45,117),(9,152,46,116),(10,151,47,115),(11,150,48,114),(12,149,49,113),(13,148,50,112),(14,147,51,111),(15,146,52,110),(16,145,53,109),(17,144,54,108),(18,143,55,107),(19,142,56,106),(20,141,57,105),(21,96,140,76),(22,95,121,75),(23,94,122,74),(24,93,123,73),(25,92,124,72),(26,91,125,71),(27,90,126,70),(28,89,127,69),(29,88,128,68),(30,87,129,67),(31,86,130,66),(32,85,131,65),(33,84,132,64),(34,83,133,63),(35,82,134,62),(36,81,135,61),(37,100,136,80),(38,99,137,79),(39,98,138,78),(40,97,139,77)]])

62 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E···4L5A5B10A···10N10O···10V20A···20P
order12···22244444···45510···1010···1020···20
size11···144444420···20222···24···44···4

62 irreducible representations

dim111111222222222244
type++++++++-+++-+-
imageC1C2C2C2C2C2D4D4Q8D5C4○D4D10D10C5⋊D4Dic10C4○D20D4×D5D42D5
kernelC24.7D10C10.10C42C2×C10.D4C2×C4⋊Dic5C2×C23.D5C10×C22⋊C4C2×Dic5C2×C20C22×C10C2×C22⋊C4C2×C10C22×C4C24C2×C4C23C22C22C22
# reps112121422264288844

Matrix representation of C24.7D10 in GL6(𝔽41)

100000
0400000
001000
000100
000010
0000140
,
4000000
0400000
001000
000100
0000400
0000040
,
100000
010000
0040000
0004000
000010
000001
,
4000000
0400000
001000
000100
000010
000001
,
010000
4000000
00391600
00252500
0000400
0000040
,
4000000
010000
0003200
0032000
0000402
000001

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,39,25,0,0,0,0,16,25,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,0,32,0,0,0,0,0,0,0,40,0,0,0,0,0,2,1] >;

C24.7D10 in GAP, Magma, Sage, TeX

C_2^4._7D_{10}
% in TeX

G:=Group("C2^4.7D10");
// GroupNames label

G:=SmallGroup(320,576);
// by ID

G=gap.SmallGroup(320,576);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,701,344,254,387,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=d*c=c*d,f^2=c,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^9>;
// generators/relations

׿
×
𝔽